A problem in the Kourovka notebook concerning the number of conjugacy classes of a finite group

نویسنده

  • Colin Reid
چکیده

In this paper, we consider Problem 14.44 in the Kourovka notebook, which is a conjecture about the number of conjugacy classes of a finite group. While elementary, this conjecture is still open and appears to elude any straightforward proof, even in the soluble case. However, we do prove that a minimal soluble counterexample must have certain properties, in particular that it must have Fitting height at least 3 and order at least 2000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

On the Regular Power Graph on the Conjugacy Classes of Finite Groups

emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

Groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008